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THE STRUCTURE OF §.PINCHED MANIFOLDS WITH
THE FUNDAMENTAL GROUP =, (M) — Z,

KATSUHIRO SHIOHAMA

The present paper is a continuation of the differentiable pinching theorems
for the sphere (see [7]), and the real (see [3] and [4]) and the complex (see
[5]1) projective spaces. The diffeotopy theorem plays an essential role for ob-
taining the dimension independency in the proof of the sphere pinching theorem.
In order to make a fibre preserving diffeotopy between the Hopf fibration
Sttt gt/ 81 = P(C)* and the free S! action on $***! which is caused by a
Riemannian manifold N with certain conditions (see [5]), we made heavy use
of the strong diffeotopy theorem to get the diffeomorphism between the complex
projective space and such an N. In the real projective pinching theorem, a fibre
preserving diffeotopy between the antipodal map on $™ and the involutive dif-
feomorphism on S™ obtained from a §-pinched M with =,(M) = Z, is con-
structed easily by the diffeotopy theorem, and in this case we again obtain the
dimension independency. The reason why we need not use the strong dif-
feotopy theorem in the real projective pinching is based on the following two
facts. First, for each point p on a §-pinched M with =,(M) = Z,, the cut
locus C(p) of p is a compact hypersurface of M without boundary. Second,
the deck transformation on the universal covering Riemannian manifold A of
M leaves the inverse image 7~ '(C(p)) of C(p) invariant, where z: M — M is
the covering projection.

However, if the order of =,(M) is greater than 2, it will not be easy to in-
vestigate the structure of cut locus C(x) of a point x on M. This is because
C(x) has nonempty boundary, and furthermore each element of the deck
transformation group does not leave n~(C(x)) invariant. For instance, let
L7+ (r,, -, 1r,; k) = S**1/G be a general lens space of constant curvature 1
of the type (ry, - - -, 7,3 k), 1.e., G has the generator g such that it is expressed
in terms of the orthonormal basis (e,, - - -, €,,.,) of R*™*? as follows :

R(r,/k) ]

| R(r,/k)

&= ) R(a)::[

cos 2w sin Zza]

. — sin 2z cos 2w
R(r,/k)
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Then for each point p* ¢ L*™*!(r,, - - -, r,; k) the cut locus C(p*) is a compact
hypersurface with nonempty boundary, and z~'(8C(p*)) is isometiric to the
great (2n — 1)-sphere of §**', where «: 8™t — L™*(r, .-, r,; k) is the
covering projection. Moreover each element of the deck transformation group
leaves 7~'(8C(p*)) invariant but not z7(C(p*)).

In this paper we shall deal with the case where =,(M) = Z, and dim M must
be odd. Our main result can be stated as follows.

Main theorem. There exists a monotone increasing sequence {6,}, 6, € (4, 1)
in such a way that for any connected, complete and §-pinched Riemannian
manifold M with its fundamental group m,(M) = Z,,6 > &, implies that M is
diffeomorphic to the lens space L**1(1, - - -, 1; 3).

We shall give in § 1 definitions, notation and the known results to be used
in this paper, and shall investigate in § 2 the structure of the cut locus C(p) of
a suitably chosen point p on M. Then we see that C(p) is a compact hyper-
surface of M with nonempty boundary. We shall study in § 3 the structure of
the boundary 8C(p). On the universal covering Riemannian manifold M of M,
each element of the deck transformation group leaves the submanifold z~1(8C(p))
invariant, and hence we get the Z, action on 7z }(3C(p)) via the deck transforma-
tion group. Clearly #7'(8C(p))/Z, can be identified with aC(p). In § 4, the
strong diffeotopy theorem is employed to construct the fibre preserving dif-
feotopy between the Z; action on n~(0C(p)) and the standard Z, action on
Sie-1 where dim M = 2n + 1 and by definition the standard Z; action has
the generator g € Z, such that

(R(1/3) )
R(1/3) l
R(1/3)

and its quotient space is L*"Y1, -..,1; 3) =: L*~!(1; 3). Finally we shall
prove the main theorem as well as the homeomorphism theorem.

1. Preliminaries

Throughout this paper let M be a complete and connected Riemannian
manifold whose sectional curvature K and fundamental group =,(M) satisfy,
respectively,

(1.1) 1<K« for any plane section,
1.2 ‘ (M) =2, .

As is well known, an even dimensional complete Riemannian manifold of
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positive sectional curvature either is simply connected or has its fundamental
group = Z,. Therefore from (1.1) and (1.2), dimension of M must be odd and
we set

(1.3) dmM=2n+1.

Let M be the universal Riemannian covering of M, and 7: M — M the cover-
ing projection. For a point x e M (% ¢ M) we denote by M, or T,M (M, or
T.M) the tangent space of M (M) at the point. Denote by d: M X M — R
the distance function on M with respect to the Riemannian metric, and also
by d the distance function on M. z,(M) can be identified with the deck trans-
formation group. Let g € 7,(M) be a generator. For each point x € M we denote
by %, %, %, ¢ M all the elements of z~1(x) (depending on the choice of both g
and X;) such that

(1‘4) gi(io) = il ] i = Os 152 .

For a smooth curve c¢: [0, 1] — M, ¢/(¢) is by definition its velocity vector at
c(?) and its length denoted by L(c) is given by

L(o) = J: CLORLO

The cut locus at x € M is denoted by C(x).

We shall now state the known results to be used in this paper. For each
point on a complete and simply connected Riemannian manifold N satisfying
condition (1.1), the cut locus theorem due to Klingenberg states (see [2])

(1.5) dx,C(x)) > =n .

In other words, let U.(x) C N, be the open ball in N, with the radius = and
center at the origin, and let B (x) C N be the open metric ball with the same
radius and the center at x. Then exp,|U,(x) — B.(x) is a diffeomorphism.

Let S™(k) be the standard m-sphere with the constant curvature &, and let
7: 00,81 = N, 7,: [0, 8] — $™(8), 1,: [0, 8] — S™(1) be normal geodesics (i.e.,
parametrized to the arc length), where N is complete, dim N = m and N
satisfies (1.1). Let Y, Y, and Y, be the Jacobi fields along 7, 7, and y, respec-
tively such that Y(0) = Y,(0) = Y,(0) = 0, |Y'(O)|| = | Y}©)] = | Y(O)].
Then from Rauch’s comparison theorem (see [2]) it follows that

(1.6) 1Y) < | YOI < ||Y,0|| forany e [0,q] .

If these initial conditions are replaced by | Y(O)|| = || Y,(0){| = {{Y(0)| and
Y’(0) = Y}(0) = Y7(0) = 0, then from Berger’s comparison theorem we have

(see [1D)
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(1.7) 1,01 <I1Y@I LY, (0] for any € [0,x/2].

A geodesic triangle 4 on N is by definition a triple of minimizing nontrivial
geodesic segments, every one of whose extremals are on the others. Denote by
L(4) the circumference of 4, and by «, 3, r € [0, 7] its angles. For a geodesic
triangle 4 on N, let 4; and 4, be the corresponding geodesic triangles on $%(5)
and S$%(1) respectively, where by definition 4; and 4, have the same side lengths
as 4. From Toponogov’s theorem (see [2]), each angle of 4 is not less than
the corresponding angle of 4,, i.e.,

(18) o, <o, Igag,@, <7 -

As a direct consequence of both theorems of Rauch and Klingenberg, we see
that if a geodesic triangle 4 on a simply connected N satisfying (1.1) has cir-
cumference L(4) < 2rx, then the corresponding 4, with angles «,, 5, y, exists
on 5%(1) such that

(1.9 a<o, <P, 1<

If N satisfying (1.1) is not simply connected, its diameter d(N) has an upper
bound

(1.10) dN) < d=/V5

where the diameter is defined by d(N): = Max {d(x,y); x,y € N}.
Finally we shall state the diffeotopy and the strong diffeotopy theorems.
Diffeotory theorem (see [7]). Let f be a diffeomorphism on S™(1) < R™*},
where R™*! is by definition a Euclidean (m 4 1)-space, and assume that

(1.11) B:= Max {I (u, f); ueS™(1)} < ir,
(1.12)  e:= Max{ (4,dfA); 4 e TS™(1)} < cos™! {— cos ﬂ-\/sinﬂ/ﬂ} .

Then f is diffeotopic to the identity map via the following homotopy of diff-
eomorphisms : For each point u € S™(1), let v, : [0, 1} — S™(1) be the shortest
great circular arc parametrized proportionally to the arc length, and let
F,: 8™(1) — 8™(1) be given by F,(1) = r,(¢). Then F, is a diffeomorphism for
any t € [0, 1].

Strong diffeotopy theorem (see [5)). Let f satisfy (1.1) and (1.2) and let
L > 0 be a constant such that

(1.13) L7 <ldid)] < L for any A e TS™(1), 4| =1.
Then for any t € [0, 1} and any unit vector A ¢ TS™(1) we have

(1.14) L<|dFA|<H,
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(1.15) L (4,dF A) <&+ 8,
where L, H and ¢ are the constants defined by
L* = L7%cos’e — (L* + 1 — L™%cos?¢) sin 2« ,

H? = (L* +1 — L™ %cos?e)(1 + sin2q) ,

cose = (cosa — sina)L " cose/+/ (L2 + 1 — L %cos’e)(1 + sin 2a) ,

cosa = L'cose/vL* + 1 — L% cos’e .

In the above theorem we see ﬁlimo a=0, ﬁlimo e = 0and ﬁlirno L = ﬁlimo H=1.
) f2 fal g
We may actually assume that 3, ¢ and L are taken so close to O and 1 respec-

tively that these constants make sense. Indeed in this paper we find upper bounds
B(8), €(8) and L(5) of B, ¢ and L respectively so that laigll B8 = lg_rgl (@) =0
and laigll L©) = 1 hold.

2. The structure of cut locus

Let M satisfy conditions (1.1) and (1.2). Then for any point x € M we have
(see [4])

(2.1) 37 < dx, C() < $x/V'5 .

Since the function x — d(x, C(x)) is continuous on M and M is compact, the
function takes a minimum value. Let p € M be the point at which the minimum
value, say [, is attained. From (2.1) there exists a simply closed geodesic y of
length 2/ such that

(2.2) 00,20 =M, Y0 =7Q), iz<l< Vs .

The lifted geodesic is denoted by 7, and from (2.1) anq (1.2) it is of length 6/.
Take a point j, € z~!(p) and parametrize §: [0, 6{]] — M such that #(0) = p,.
Then we can choose g € 7, (M) such that p; = g4(p,) = 7(2il). Setting

(2.3) Fii={XeM; d(p;,1, ®) = d(pi,, H)} (m0d 3) ,

ZF; is a compact subset of M,and p, e F,, gi(F) = F, (i =0,1,2).
Proposition 2.1. Assume that

(2.4) 8> 9/16 .

Then % ; is a compact hypersurface of M diffeomorphic to §*.
Proof. We first show that
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(2.5) I <dX, p) <2 for any ¥ ¢ & .

In fact, from the choice of p the first inequality in (2.5) is trivial. Suppose there
exists a pOintj} € 33’1 such that yiﬁz and d(j}a ﬁi+]) = d(j’: pi+2) 2 d(ﬁz) piﬂ)-
Note that d(p;, p;,1) = 21 > 2n/3 >1irx/+/ 8 follows from (2.2) and (2.4).
Apply Toponogov’s theorem (1.8) to the geodesic triangle with vertices p;, ;.
and § (or p;, p;., and P) to derive a contradiction. Thus the function
X —d(X, p;.y), X € &, attains its maximum value 2/ exactly at the point 5. Since
20 < %n/«/f < 7 and (1.5) holds for each point on M,ZF,C B.(p;,) N
B (p;,.). The function &;: M — R defined by

(2.6) D) = d(Pi, ) — d(Piyy B,  FeM

is continuous on M and differentiable on (B.(p;,,) — {Ps:1) N B (P;,0) —
{P:,2})- In particular, grad 4]; # 0 holds for any % ¢ &#,. Hence &, is a
compact hypersurface without boundary.

Finally we shall prove %, to be diffeomorphic to $**. Let &: [0, z] — M be
a normal geodesic such that &0) = j;.,. Clearly 4,(¢(0)) = —2! < 0 and
2:(&(x)) > 0, so that ¢ intersects #; at some point &(¢,). Obviously the inter-
section is unique, and &(t;) is never tangent to 7;,,%#; in T a(mM . Thus the
map &(0) — &(t,) from the unit hypersphere S,,,,(1) in T;,,, M, centered at
the origin, onto %, is a diffeomorphism. Hence the proof is completed.

We note #7(C(p)) C F, U F, U &,, and each point ¥ on =~ (C(p)) has
one of the following properties :

Q2.7 AP X)) = d(Pi,, %) < d(Psyp %) for somei =0,1,2,

2.3 d(ps; %) = d(Pi11: %) = d(Pin %)

In order to investigate the structure of #~'(C(p)), we shall define the function:
29 wm:M—-R, w®=dQ& p) + dEpi,) —2E ), ¥eM .

;1S continuous on M and differentiable on (B.(py) — {B)) N (B(P) —
{B.) N (B(B) — {B). Let & be defined by

(2.10) & = {XeM;dF, p) = d&, p) = dE, p)) .
From definition follows
211) é=FNF  NF, =FNF, =F NF,=%,NF,

(as point sets). Here we essentially use assumption (1.2). Clearly each element
of the deck transformation group leaves & invariant. g, | #,: %, — R is con-
tinuous on % ; and differentiable on #; N B,(7((2i + 3))). From (2.11) and
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gi e Bn(ﬁi—f—l) N B,,(ﬁ“.z) WE s€e
(2.12) & < B.(p) N B.(p) N B(P) .

Proposition 2.2, Under assumption (2.4), & is a compact 2n — 1)-dimen-
sional submanifold without boundary and is diffeomorphic to §%°1.

Proof. 'We may restrict our discussion to the case where $((3 4 2i)!) does
not belong to the closure B,(p;) of the open ball. In fact, (3 + 2)) € B.(5,)
implies { = 4z, and hence M is isometric to S$7+1(1) (see [4]). Therefore M
is isometric to L**!(1,3). Consider the gradient field of p; restricted to
F; N B.(p;). We claim that on &#; N B,(f,), there exists no critical point of
¢, other than p;. Recall that (X — d(%, §,,)), X ¢ &;) takes its maximum value
exactly of the point ;, and hence j; is a critical point of y;. For any point ¥
on %, N B.(p), X # Py, letd;,,d;.,,: [0, m] — M and &, : [0, 1] — M be the
minimizing geodesics such that 4;(0) = j;, j = 0,1,2, d,,(m) = d; ,(m) =
d,(m) = X. Then we have

grad (¢;|#; N B,(P))|; = the tangential component of

2.13) . . -
a;, (m) + d@_ (m) — 2a,(;m) to T, %, .

Since &.,,(m) is symmetric to &, ,(m) with respect to T,%,, &, .(m) +
d;,,(m) € Tz% ;, and clearly m < 2[. From Toponogov’s theorem (1.8) follows

cos { (&/_(m), ﬁ’(m)) < CcOS 2[\/‘56 — COS mx/F COoS ﬁ'lx/?
! B sin my/ 6 sin#y/ 6
< cos 2/ '8 (1 — cosm/3)
sinm+/ 8 sin#iy/ 8§

b

j # i. But from (2.4) we have 2Iv/ 6 > §x, since < (&@)(m),a(m)) > ix,
j # i. Therefore the angle between a,,,(m) + a,,,(m) and the tangential com-
ponent of — 2a(m) to T, ; 1s less than {z. Thus we have proved

grad (p; | F N B (P + 0 for X = p; .

Hence we observe that &#; N B,(p,) is diffeomorphic to a 2n-disk, and each
level surface y;'({constant}) especially #;'({0}) = & is diffeomorphic to $**'.
We shall define the sets

o N =0,1,2.
F;={FeF,;; u(X) <0},

Then &} has clearly no intersection with z~(C(p)), so that

(2.14) THCP)) =F; UFT U FT UE (disjoint union),
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(2.15) BFN=F;, g&O=¢, i=012

(2.15) allows us to consider the free Z, action (&, ¢*, Z;) on & by the deck
transformation group. In fact, for any point X ¢ &, let

(2.16) o*@EL, D :=g'(®), geZ=nM).

Clearly the quotient space £/ Z, is diffeomorphic to the boundary 3C(p) = #(&).

For any % ¢ € let X € T,¢ and 4, : [0, m] — M be the unique shortest con-
nection joining ; to X. From (2.8), we see < (X, dj(m)) = < (X, d(m)) =
I (X, dym)) = 0. Hence with the aid of (2.12), the projection p,: & —
S(1) © M,, defined by

(2.17) pA%) 1= &(0)

is a diffeomorphism, where S(1) is the unit hypersphere in Hﬁo centered at
the origin. We shall denote by £ the image

(2.18) E=p(&) < S, .

Obviously E is a hypersurface of S (1) and diffeomorphic to the standard
sphere. Therefore we have the Z, action (E, ¢, Z,) such that

(2.19) (g, u) = p,-*(g%, p; (W) , uekE, gieZ,.

Clearly we have the following
Lemma 2.3. The quotient space E|Z, is diffeomorphic to 3C(p) = =(&).
Proof. Since p, is the fibre-preserving diffeomorphism, (&, ¢*, Z,) is equi-
valent to (E, ¢, Z;). The conclusion is now trivial from &/ Z, being diffeomorphic
to n(&).

3. The Z, action on &
Lemma 3.1. Assume that
3.1 6 > 25/36 .
Then for any % ¢ & and any i=0,1,2, we have
(3.2) In < dE p) < 3V .

Proof. Letd,: [0, m] — M bethe minimizing geodesic such that d,(0) = p,
a;m) =%, m=d(p,;,%). From =(%) e C(p) and (1.10), follows d(%, p,) =
d(x, p) < dM) < 4n/+/ 5 . (3.1) ensures that the circumference of the geodesic
triangle with the sides &;, 7#|[2il,2( + 1)1 and d&;,, is less than 2z since
m < iz/v'é and 21 <2z/(3v5). Thus &, ,(H e B.(p;) holds for any
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t ¢ [0, m], and without loss of generality we may assume that < (&;(0),
7(2il)) > 4=. From (1.9) we get m > ix.

Now by the triangle arguments stated in (1.8) and (1.9) together with the
cosine rule in spherical trigonometry, we get

Lemme 3.2. Under the assumption (3.1) we have, for any X e & and

i=0,1,2,
(3 3) Max {7?.' —_ a)H(é), Q)L(a)} _<_ @: (&:(O) s

' 7(2iD) < Min {0y(0), 7 — 0, (®)} ,
(3.4) 0.(0) < L (@(m), &, (m) < 64(D) 5

where we set

Cos ——ZL — cosz_._jr__._
3.5 0:6) = ,375:;,5_  0,(0) = cos-i] V8 Wi |
) T B
sin e}
®(8) = cos™? (tan % cot _”_‘é g ) ,
3.6)

wy(d) = cos“l(tan

T__ cot ”_).
3o 23

The proof is left to the reader.
For any %,¢¢, let %,% & be such that g¥&%,) = %, and 4, b;, &;:
[0, m] — M be the shortest geodesics such that

4,(0) = b,(0) = 2,(0) = p;, a(m)=3%, b(m) =3,

3.7 . . ) . o~
cz(m) = X3, 1= 05 15 25 m= d(p'w xj) .
Clearly we see
go&i = Ei+1 1 gzo&i = g05i+1 = Z.i+2 3
(3.8 gob, =&, , gob; = goly,, = 8;,, ,
gol; = dy .y, gol; = goly,, = by, .

Define the projection map p,: E — S3(1) < S,(1) with respect to the point
7(0) by

(3.9 W) = u — {u, 7070 , uck,
where S¢(1) is by definition the equator hypersphere with the north pole #(0).
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Proposition 3.3. There exists & ¢ [25/36, 1) such that
(3.10) a>4d

implies that p, is a diffeomorphism.

Proof. Foranyue Eandany A ¢ T E, |4] =1, let¢: I — E be a smooth
curve fitting 4 so that ¢’(0) = 4 and 0 ¢ [ is an interval. Let 4,: [0, m] — M
be the minimizing geodesic such that d(0) = p,, d,(m) e &, and 4)0) = u.
Define a 1-parameter geodesic variation V : [0, m] X { — M along &, by

(3.11) V(t,s) = exps, M)—t , tel0,m], sel.
m

We denote by Y(7) the Jacobi field along 4, associated with ¥, and by ¥ | (¢) its
normal component of &(z). Obviously Y, (¢) is again a Jacobi field. From
construction

(3.12) Y0) =0, Y, 0=AecM,,

where A4 is identified with the vector obtained by the parallel displacement of
AeT,E C T,S,(1) in M,,. Let P be the unit parallel field along 4, such that
P(0) = A = Y’ (0). From an approximation theorem of Jacobi fields (see [7])
we have an upper bound @(38) for the angle

(3.13) L (Y (m), P(m)) < 0(0), 1lmOE) =0.

Apply Berger’s theorem (1.7) to the curve c¢: [0, m] — M, c@t):= exp 1zP(?)
to get

T ﬂN/F
(3.14) L) < N cos 5 .

From (2.8) and Lemma 3.2, follows

sint( 2 sin 22) < 3L (¥ (), Am) = <L (¥, m)
(3.15) V'3 2

= & (Y(m), &(m)) < = — sin™ ( é sin %) ,

2
V3

sin %L), and hence we

(3.15) implies < (Y(m), ¥, (m) < = — sin—l(
get an upper bound 6(6) for the angle

(3.16) L (Y(m), Pem)) < 6@), 1im6@) =0.
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Thus we have a bound d(8) for the distance

3.17) d(g,exp X i - 7= exp & _Y(M)
(3.17) (q,exp 2A)Sd(5)’ imd@® =0, ¢ ) 1Y (m)]|

On the other hand, (3.15) implies

N . 2 . @8
d@q, 5) > ( _L)
(g, p) = sin Va3 sin 5

together with Rauch’s theorem (1.6), and therefore we obtain a lower bound
for the distance

d<exp za, ;h) > sin! <% sin %k) —d) .

To the geodesic triangle with vertices p,, 5, and exp izA, we apply (1.8) to
get a lower bound for the angle

cos ¥ & L (7(0), 4)

— Fi 27248
cos v & <sin“<~/% sin 671‘) — d(5)> — cos mé& cos ”;/5
SEREE TN 2
sin ———— sin ——

=:cos /3 D.0) .

Analogously we have an upper bound @,(5) for the angle < (#(0), A) such
that

(3.19) 0,0 < XL G0, A) < Py(),  lm,(0) = lim 0,6) = 4m .
If & is chosen so close to 1 that
(3.20) @, >0, N <z

are satisfied, then d(p,),4 # O holds for any u ¢ E and any 4 ¢ T, E. Since
Pris 1 — 1 and onto, the proof is complete.
Let w: E — R be the function defined by

(3.21) o(u) = < (4, p,() , uekE .

Clearly » 1s a differentiable function on E as far as (3.10) is satisfied, and
from (3.3) follows

(3.22) 0 < o) < Max (37 — 0. (5), wa(d) — 3} .
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Each u ¢ E can be expressed as u = cos w(u)- p, (1) + sin w(u)-7(0). Put

pr(w) = cos {(1 — ) 0)}p, () + sin {1 — 7)-0@)}-7O),

3.23
( ) uek, rel0,1].

Then p: is an imbedding of E into S’o(l) for each 7 € [0, 1] as far as (3.10)
is satisfied. Therefore we have a 1-parameter family of Z; action (pi(E)., ¢., Z;),
z ¢ [0, 1], defined by

(3.24) v(g% v) = pi-ole’, (p,)'(W)), vep(E), geZ.

Obviously the quotient space p,(E)/Z, is diffeomorphic to &/Z, = n(E) =
2(C(p) for each 7 € [0, 1].

4. Fibre-preserving diffeotopy between ¢, and the standard Z; action

A differentiable deformation of the Z, action ¢, on Si(1) is a 1-parameter
family ¢,, t € [0, 1], of Z, actions on S(,L(l) such that the map (g, u, D—o,(g, u)
is differentiable. For a diffeotopy F,, t ¢ [0, 1], on Si(1) such that F, = identity,
we have a deformation of ¢, in the following way: For each ¢ ¢ [0, 1] let ¢, be
defined by

“.1) o8, u) = Frop(e', F'w),  i=0,1,2.

In this section we shall construct a deformation ¥, of ¢, such that ¥, = ¢,
and ¥, = the standard Z, actions on S¢(1). If such a deformation exists, then
the quotient space Si-(1) /Z, of (S, o1, Zy) is diffeomorphic to L(1; 3) and
s0 1s w(&) = 2C(p).

Theorem4.1. We have a monotone increasing sequence {3}, 6, € [25/36, 1),
such that

(4.2) 5> 8

ensures the existence of a deformation ¥, of Z; action such that ¥, = ¢,, and
¥, is the standard Z, action on Si-(1), where N depends on dim M.

To prove the theorem, we shall prepare Lemmas 4.2-4.4 and Propositions
4.5-4.6 below. The first step of constructing the deformation in the theorem
is to choose an orthonormal basis (e, - - -, €,,,,) for M 5 iN such a way that
7(0) = e,,,, and the standard action is roughly speaking near to ¢, and is ex-
pressed in terms of (e, - - -, e,,) as follows:

(R )]
. I 2 2n

(4.3) Tye,u) = : S um L e, Ru=

R} |wen
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To do this we define an isometry i* M,, — M, by
(4.4) h(X) = s5-t-dg;,.X , X e M,

Do ?

where g ¢ m,(M) is the fixed element of the deck transformation group in § 2,
T! M — M s, is the parallel displacement along 7![0, 2/}, and s: M — M
is the reﬂection with respect to the hyperplane normal to 7(0). Obv1ously h*
is a linear isometry, and A*(7(0)) = — #(0).

Lemma 4.2, There exist functions «;(8) and ay(8) such that for any
ue S

4.5) ‘ a0 < < (u, 7)) < ax ) ,
(4.6) lim a,(3) = lim ax(®) = 3n
Proof. For any ue S(1) let %, = expmp;u)e &, me[in, in/v 5 ).

From (2.1), Lemma 3.2 and (1.7) we obtain the following inequalities by the
same method as in the proof of Proposition 3.3:

2z 3 T T
4.7 L d@) < d(ex = h*(u), ex —u) < +d@e
4.7 3 0 < P (u), exp 3 3 x/ ()
where d(3) is an upper bound for the distance d(%,, exp ixA*(u)) such that
= 2 v 3§ 2 { m/ 3
de) = -~ .cos I~ 4 .~ cos ! (cos? —
O=575% *75
4.8) + sin? L@- cos 00)} ,

20) = Max {{rn — 0., 05y — Iz} .

Applying (1.8) and (1.9) to the geodesic triangle with vertices f,, exp }nu,
and exp izh*(u), we obtain the conclusions.
Therefore, if é is chosen so that «,(5) > 0 and «z(d) < z, then we can

choose the orthonormal basis (e, - - -, e,,.,) for M 5 such that #* is expressed
as follows:
(R(a,) 1 ()
R(@) -
h*(v) = . .
4.9 R(a,)
—1) (V211

2n+1 2n+1

v = Zvieis Z’U%—_—l, e2n+x=7(0)-
, i=1

i=1
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Lemma 4.2 implies a;(3) < a) < ay(d) for any k = 1, .- -, n. Thus we can
restrict A* to S£(1), and denote it by

4.10) h = h*|SF1) .

Below we fix the orthonorrr~1a1 basis which allows the expression (4.9). Clearly
h can be joined to ¥, (g)|Si1) in the orthogonal group as follows: For each
t e [0, 11, let A, be

Rt 4 $(1 — 1)
(4.11) h, = .
R(a, + ¥1 — 1)

Then h, = ¥(g, )|SK1) and &, = h.

In the following we want to construct a diffeotopy between 4 and ¢,(g, ).
For simplicity we write f,(4) = ¢,(g, 1), U ¢ 5’0(1), te [0, 1]. As a direct con-
sequence of Lemma 4.2 we obtain

Lemma 4.3. For any u € S§+(1) we have

(4.12) L (@), hw) < d@) + 20) = : g0 .

On the other hand, from (1.6) we obtain
Lemma 4.4. For any A ¢ TS§(1), ||4|| = 1, we have

(4.13) L~'@) < |jdf. 4]l < L) ,
where

. Max{sin @,(0), sin D)} ( = . 7 \*
@14 Loy = < sin ,(3), sin D5(3)} (‘/5 SRV ) ‘

We note that 15151;1 F(®) = 0 and 19111;1 L@®) = 1.

Proposition 4.5. There exists ¢(3) such that for any ue Si(1) and any
A e TS(1), we have

(4.15) XL (@f4,dhd) < £0) ,
(4.16) lime'(®) =0 .

Proof. For any u e S¢(1) and any A4 ¢ T,5¢(1), from Proposition 3.3 we
have the nonzero vector 4:= d(p,)'A ¢ T,,_, ,E. Then

L (df, A, dhA) < X (df A, df,A) + < (dfy A, dh* A) 4 X (dh* A, dhA) .
Because of (3.19), (3.21) and (3.22), the first and the last terms on the right hand
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side of the above inequality tend to zero as d — 1. Let X, = exp,, (p,p,) *(w),
and let Y, Z be the Jacobi fields along d,, b, respectively such that Y is associated
with the geodesic variation (3.11) and Z(¢) = dg;_,, Y (¢). From the construction,

Y(0)=20)=0, |[Yim|=]|2Zm]|,

4.17) _ S
A=Y,0), dgd=2,0),

where Y and Z are the normal components of ¥ and Z respectively. Further-
more we get the 1-parameter geodesic variation ¥ : [0, m] X I — M along b,
such that V(m, s) = g(V(m, 5)), V(0, s) = Doforanysel. Let Y be the Jacobi
field associated with ¥, and ¥ | its normal component to 130. Then we see

(4.18) V,.00)=df,A, T(@m) = 2Zim).
Since

I (dh*A, d(zog)A) = 2{3x — I (F(0), 4A)}
< 2Max {4z — @,(9), @x(5) — %}

and lﬁiyll & (dh*A,d(rog)A) = 0 from (3.19), we have only to verify
lim (d(z-g)4, df,A) = 0. This is equivalent to show

(4.19) lim d(expy, $nd(cog) 4, exp;, 3xdf,A/||dfyA|) =0 .

Combining the approximation theorem for Jacobi fields with (1.7), (4.18),
(3.19) gives

lim d(exp,, 3ndf, A/ df,A||, exp;, dndgd) =0 .
The approximation theorem for Jacobi fields implies
]oi-n11 d(expy, tnd(zog) A, exp;, tndgd) = 0 .

From these relations we obtain (4.19), and thus the proof of the proposition
is complete.
Corollary. There exists 8" independent of dim M such that

(4.20) 5>

‘implies that both {, and f; are diffeotopic to h and I respectively.
Proof. By the same arguments as in Lemma 4.3 and Proposition 4.5, we
can verify

(4.21) Max { (), R*(w); u e SH(1)} < 28'() ,
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(4.22) Max { (d()A, d(h)A); A e TSEHD} < 26(3)

Hence we can find §” independent of dim M such that (4.20) ensures the dif-
feotopy conditions (1.11) and (1.12) for both f,- ' and f}- 2. Thus the proof
is complete.

Proof of Theorem 4.1. Let § satisfy (4.20), and F,, H,, t € [0, 1] be the
diffeotopies such that

= =i S — ¢l -1
4oy = H=idSe®, = SeW)7,
H, = fi-(h| S 72,

where we have employed (4.11).

We now fix a point u, € S¢-(1), and set U, to be the domain of S(1) such
that u, e U, and U, N f(U,) N £i(U) = @, U, N 1,{U,) +# @, where U, is the
closure of U,. Let V, C U, be the open ball contered at u, with the radius
r, in such a way that for any v € U, the distance between v and ¥, is greater
than 25'(8). If § is chosen so close to 1, we can find nonempty V,. So we may
consider V, # §. Let W, be the open ball centered at u, with the radius r,,
where r, is fixed in (r, r, + 258(3)). We define the functions r: U, — R and
»: [0,r] — [0, 1] as follows:

r() = < (WU, v), vel,,
“4.24) 7nHh =0 fortef0,r], 7 >0 forte(r,r), 5r)=1,
PP =7®) =0  fork=1,2,..

We observe that both of the mappings F,. k| U,: U, — S¢(1) and H,.,oh3| U,:
U, — S#(1) defined by v — F,(,10y,0(0), v € Uy and v — H )0 H3(0), v € U,
respectively are imbeddings. In fact, F,,oh, is locally regular and F, ok, |U,
is 1 — 1. Thus there exists 7, e (r,, ] such that F, oh,|r~(7,) is imbedding.
Suppose F,,o 0]r‘_l(To) is not 1 —1. Then we can find v,,v, such that
r(v) = r(v,) = 7, and Fﬂ,wm o) = F 0 /1(v,). However this is a con-
tradiction since F,; ok, is a diffeomorphism on S§(1). With these notations we
can define a deformatlon ¥ of ¥, such that ¥} coinsides with ¢, on the open

set S&(1) — U fiW ) and coinsides with the standard action on U fl(VD)
Indeed, for each tef0,1] let &: (1) — §£(1) be the dlﬁeomorphlsm

v, forve¢fi(W,) U ilW,),
(4.25) §(v) = an('r(hu_l(v)))(v)a for v e f,(Wy) ,
Htﬂfr(hﬁ'g(v))}(/v)7 for v e fi(W,) .

Then &} is the identity, we see
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(4.26) Tie', u): = &g’ (€)7'(w))

is the desired deformation. We shall call u, the center of the deformation.
From the strong diffeotopy theorem we see that the new action ¥} is able to
play the same role as ¢, if § is taken sufficiently close to 1 and independent of
dim M. Thus we can find the sequence §, of pinching numbers such that
d > §; can be carried out k times of deformations mentioned above, where
the centers can be arbitrarily chosen. Let us take the finite open cover
Uy,U, -, Uy of §¢(1), where each U, is the ball with the radius », and

center u;, and Wy, W,, - - ., Wy are the open balls each of which has the radius r,
with the same center u;. If § > §, we can define N deformation &%, ¥2 ... ¥¥
such that

Tilg', u) = §U{ g (EI )W),  Vii=g .

Then clearly ¥¥ = ¥|. Thus the proof is completed.

It should be remarked that the number N depends on dim M since the
boundary aU, has so large diameter (indeed close to z) that N increases rapidly
with dim M.

As a direct consequence of Theorem 4.1 we have the

Corollary to Theorem 4.1. Under the same assumption as in Theorem 4.1,
M is homeomorphic to L***1 (1; 3).

Proof of the Main Theorem. Since E < Sy(1) is diffeomorphic to $2=,
S,(1) — E consists of the components each bounded by E. Let D, 3 (0) and
D_3> - #(0) be the components. By means of the deck transformation g, we
have the diffeomorphism f*: D_ — D, defined by

FH0) =~ (expyy | U(5)) o8> (exps, )
exp, mve Fy , I<m< invs .

Clearly we get f*(— #(0)) = #(0). From the construction for any 4 ¢ TE and
any A; € TD_ such that lim 4, = 4 we see

(4.28) dfA, = lim df*4, .

Making use of p,: E— S3(1) (defined in (3.23)), we can construct a homotopy
p,: 10,11 x S,(1) — S,(1) of diffecomorphism satisfying the following condi-
tions: (1) If p:(v): = p,(z, v) for each r ¢ [0, 1], then p; is a diffeomorphism
on S,(1) (and p° = id.|S,(1)). (2) For each point v € §i(1), p.([0, 1], v) lies
on the great circular arc joining » to #(0) when v e D, (or joining » to — 7(0)
when v ¢ D_). (3) For each 7 ¢ [0, 1], pi(x #(0)) = =7(0). (4) pL|E = p,.
Clearly fr=pL-f*-(p) ' is a dlﬂeomorphlsm from the southern hemisphere
$_ onto the northern hemisphere §,, where the north pole is 7(0). Then
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H— #(0)) = #(0), and lim djA; = df,4 holds for any A ¢ TS3(1) and 4; ¢ TS _
such that im 4; = A4.

The final step of the proof is to verify that j is diffeotopic to #,}S_. By
means of Lemmas 3.2 and 4.4, there exists a constant L(5) such that

L <)djA)| < L) forany AeTS_, |A|=1, LmLiE) =1.

Therefore we can find 87(5) such that Max {<{ (h(w), Jw);ueS 3 <@
and lim 8”(5) = 0.

On the other hand, by the same method as in Proposition 3.3 there exists
&’’(d) such that

Max {( (dh,d,dfA); A e TS } < (), lme"(®) =0.

Thu§ we can find §, > dy such that 5 > §, ensures that f is diffeotopic to
h,]S_, and the proof of the main theorem is complete.
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